Átomos, polen y probabilidades
Ramón Peralta y Fabi
Hace cien años, Albert Einstein escribió una serie de trabajos que transformaron la física de una manera sólo equiparable a lo ocurrido casi doscientos años antes con la obra de Isaac Newton. En uno de ellos, el que fuera la base de su tesis doctoral, estudió un problema al que volvió muchas veces y sobre el que publicó más de una docena de artículos, su título: “Sobre el movimiento de partículas pequeñas suspendidas en un líquido en reposo, de acuerdo con la teoría cinética molecular del calor”. El polen y los átomos, los solutos y los solventes, así como las probabilidades, constituyen los ingredientes fundamentales que Einstein usó como motivación para formular y solucionar el problema, y convencer a sus contemporáneos de varios conceptos fundamentales para el posterior desarrollo de la física.
La invención del microscopio alimentó la avidez por ver lo pequeño, tal como antes ocurrió con el telescopio y lo grande. Con este maravilloso instrumento, los investigadores volcaron su atención al interior de los seres vivos y, en el siglo xvii, descubrieron la célula, aunque su estructura, significado y sentido no llegarían hasta el siglo xix. Robert Brown, distinguido botánico escocés y uno de los más notables naturalistas de su época, quien contribuyó al conocimiento de la célula descubriendo su núcleo, investigó los reportes sobre el comportamiento de granos de polen suspendidos en el agua. De acuerdo con éstos, además de sus propias y cuidadosas observaciones, los granitos exhibían una danza incesante. Antes de nutrir las especulaciones despertadas sobre lo que parecía la esencia de la vida, llevó a cabo un minucioso estudio con diversas partículas pequeñas, como polvos de origen orgánico e inorgánico, y encontró que el movimiento rápido, errático y constante, no era privativo de la materia viva. Incluso descubrió un trozo de cuarzo en el que las partículas suspendidas en una gota de agua, atrapadas tal vez durante millones de años, ofrecían un espectáculo tan fresco como el de la preparación matutina de su laboratorio. Con justicia, y el paso del tiempo, al movimiento que describió se le llamó el movimiento browniano. En 1900, la explicación seguía eludiendo a los estudiosos del tema.
Actualmente, los átomos ya no son una novedad y se acepta sin reparo su existencia, lo cual es bastante curioso, puesto que nunca los hemos visto, ni los veremos; ya que ninguno de nuestros sentidos está desarrollado para hacerlo. Aun así, es cómodo imaginarlos de alguna manera. De hecho, no es necesario verlos para cosificarlos, hacerlos nuestros y empezar a entenderlos. Para tener un asidero secreto cuando hablamos de los átomos, construimos en la mente una imagen, como la de pequeños sistemas solares, de diversos colores y formas; la experiencia es estrictamente personal. No es tan importante que nuestras abstracciones sean precisas, nunca lo serán, pero sí lo es saber que todas las cosas están hechas de un número finito, si bien muy grande, de partes que las constituyen: los átomos. Éstos, como idea filosófica, aparecen en la cultura helénica, con Demócrito, y llegan a la cultura latina a través del magno poema De Rerum Natura, de Tito Lucrecio Caro; obra que, por cierto, fue exquisitamente traducida al español, De la naturaleza de las cosas, por el entrañable universitario Rubén Bonifaz Nuño.
Hacia finales del siglo xix, los átomos pasaron de ser una especulación filosófica a una hipótesis física, ampliamente debatida desde muy diversos puntos de vista. Científicos de enorme influencia y prestigio como Ernst Mach, Pierre Duhem, Wilhelm Ostwald y Henri Poincaré, formaban parte de la comunidad en contra de las ideas atómicas; otro sector de igual estatura, principalmente en Inglaterra y Holanda, simplemente usaba las ideas sin tomarse la molestia de contestar a los críticos, salvo por el inmenso y un tanto solitario personaje de Ludwig Boltzmann, que defendía el atomismo como en una cruzada intelectual. En 1900, la realidad de los átomos aún no era aceptada por la mayoría de los físicos, si bien seguía acumulándose evidencia; en química ya eran indispensables para darle sentido a lo aprendido durante los últimos dos siglos.
Solutos y solventes
Una tía, que asegura no entender nada de mis quehaceres profesionales, sabe perfectamente que basta con una pequeña gota de añil para teñir su vestido más extenso o que una gota de desinfectante en una jarra es suficiente para acabar con los bichos invisibles que —dice— seguramente la acechan en el fondo. Su intuición y su experiencia son correctas, aunque no sabe por qué, ni le importa. Al olor de un perfume le ocurre lo mismo. Las partículas de añil o de desinfectante, a las que en conjunto llamamos el soluto, son introducidas, en gotas, en el solvente, que en estos casos es agua; para una flor el solvente es el aire. La difusión que ocurre consiste en que, con el paso del tiempo, todo es penetrado por el soluto. En el caso de la tinta, el fenómeno es claramente visible; la gota de color azul profundo, muy concentrada y bien localizada inicialmente, poco a poco se va disipando, tiñendo todo hasta que domina un tenue azul. El aroma de una flor es explicable en los mismos términos, aunque ahora lo percibimos a través del olfato; pasado un rato, la habitación que ocupa una discreta dama es uniformemente impregnada por su delicado perfume.
La diferencia de concentraciones entre un lugar y otro juega un papel importante en el proceso de homogeneización; qué tanto, lo determina un factor llamado el coeficiente de difusión D, cuyo valor dice que tan eficiente es la difusión de un soluto en un solvente.
Continúa leyendo el artículo aquí: